Компьютерные уроки для начинающих

Компьютерные уроки для начинающих

» » История информационных технологий. Информационная технология Информационная технология история и этапы

История информационных технологий. Информационная технология Информационная технология история и этапы

История возникновения информационных технологий уходит своими корнями в глубокую древность. Первым этапом можно считать изобретение простейшего цифрового устройства – счетов. Счеты были изобретены совершенно независимо и практически одновременно в Древней Греции, Древнем Риме, Китае, Японии и на Руси.

Счеты в Древней Греции назывались абак , то есть доска или еще «саламинская доска» (остров Саламин в Эгейском море). Абак представлял собой посыпанную песком доску с бороздками, на которых камешками обозначались числа. Первая бороздка означала единицы, вторая – десятки и т.д. Во время счета на любой из них могло набраться более 10 камешков, что означало добавлениеодного камешка в следующую бороздку. В Риме абак существовал в другом виде: деревянные доски заменили мраморными, шарики также делали из мрамора.

В Китае счеты «суан-пан» немного отличались от греческих и римских. В их основе лежало не число десять, а число пять. В верхней части «суан-пан» находились ряды по пять косточек-единиц, а в нижней части – по две. Если требовалось, скажем, отразить число восемь, в нижней части ставили одну косточку, а в части единиц – три. В Японии существовало аналогичное устройство, только название было уже «серобян».

На Руси счеты были значительно проще – кучка единиц и кучки десятков с косточками или камешками. Но в XV в. получит распространение «дощаный счет», то есть применение деревянной рамки с горизонтальными веревочками, на которых были нанизаны косточки.

Обычные счеты были родоначальниками современных цифровых устройств. Однако, если одни из объектов окружающего материального мира поддавались непосредственному счетному, поштучному исчислению, то другие требовалипредварительного измерения числовых величин. Соответственно, исторически сложились два направления развития вычислений и вычислительной техники: цифровое и аналоговое.

Аналоговое направление, основанное на исчислении неизвестного физического объекта (процесса) по аналогии с моделью известного объекта (процесса), получило наибольшее развитие в период конца XIX – середины XX века. Основоположником аналогового направления является автор идеи логарифмического исчисления шотландский барон – Джон Непер, подготовившийв 1614 г. научный фолиант «Описание удивительной таблицы логарифмов». Джон Непер не только теоретически обосновал функции, но и разработал практическую таблицу двоичных логарифмов.



Принцип изобретения Джона Непера заключается в соответствии логарифма (показателя степени, в которую нужно возвести число) заданному числу. Изобретение упростило выполнение операций умножения и деления, так как при умножении достаточно сложить логарифмы чисел.

В 1617 г. Непер изобрел способ перемножения чисел с помощью палочек. Специальное устройство состояло из разделенных на сегменты стерженьков, которые можно было располагать таким образом, что при сложении чисел в прилегающих друг к другу по горизонтали сегментах получался результат умножения этих чисел.

Несколько позднее англичанин Генри Бриггс составил первую таблицу десятичных логарифмов. На основе теории и таблиц логарифмов были созданы первые логарифмические линейки. В 1620 г. англичанин Эдмунд Гюнтер применил для расчетов на популярном в те времена пропорциональном циркуле специальную пластинку, на которую были нанесены параллельно друг другу логарифмы чисел и тригонометрических величин (так называемые «шкалы Гюнтера»). В 1623 г. Уильям Отред изобрел прямоугольную логарифмическую линейку, а Ричард Деламейн в 1630 г. – круговую. В 1775 г. библиотекарь Джон Робертсон добавил к линейке «бегунок», облегчающий считывание чисел с разных шкал. И, наконец, в 1851-1854 гг. француз Амедей Маннхейм резко изменил конструкцию линейки, придав ей почти что современный вид. Полное господство логарифмической линейки продолжалось вплоть до 20-30-х гг. XX века, пока не появились электрические арифмометры, которые позволяли проводить несложные арифметические вычисления с гораздо большей точностью. Логарифмическая линейка постепенно утратила свои позиции, но оказалась незаменимой для сложных тригонометрических вычислений и потому сохранилась и продолжает использоваться и в наши дни.



Большинство людей, пользующихся логарифмической линейкой, успешно проводит типовые вычислительные операции. Однако, сложные операции расчета интегралов, дифференциалов, моментов функций и т. д., которые осуществляются в несколько этапов по специальным алгоритмам и требуют хорошей математической подготовки, вызывают значительные затруднения. Все это обусловило появление в свое время целого класса аналоговых устройств, предназначенных для расчета конкретных математических показателей и величин пользователем, не слишком искушенным в вопросах высшей математики. В начале-середине XIX века были созданы: планиметр (вычисление площади плоских фигур), курвиметр (определение длины кривых), дифференциатор, интегратор, интеграф (графические результаты интегрирования), интегример (интегрирование графиков) и др. устройства. Автором первого планиметра (1814 г.) является изобретатель Германн. В 1854 г. появился полярный планиметр Амслера. С помощью интегратора фирмы «Коради» вычислялись первый и второй моменты функции. Существовали универсальные наборы блоков, например, комбинированный интегратор КИ-3, из которых пользователь в соответствии с собственными запросами, мог выбрать необходимое устройство.

Цифровое направление развития техники вычислений оказалось более перспективным и составляет сегодня основу компьютерной техники и технологии. Еще Леонардо да Винчи в начале XVI в. создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX в., все же реальность проекта Леонардо да Винчи подтвердилась.

В 1623 г. профессорВильгельм Шиккард в письмах И. Кеплеру описал устройство счетной машины, так называемых «часов для счета». Машина также не была построена, но сейчас на основе описания создана работающая ее модель.

Первая построенная механическая цифровая машина, способная суммировать числа с соответствующим увеличением разрядов, была создана французским философом и механиком Блэзом Паскалем в 1642 г. Назначением этой машины было облегчить работу отца Б. Паскаля – инспектора по сбору налогов. Машина имела вид ящика с многочисленными шестернями, среди которых находилась основная расчетная шестерня. Расчетная шестерня при помощи храпового механизма соединялись с рычагом, отклонение которого позволяло вводить в счетчик однозначные числа и проводить их суммирование. Проводить вычисления с многозначными числами на такой машине было достаточно сложно.

В 1657 г. два англичанина Р. Биссакар и С. Патридж совершенно независимо друг от друга разработали прямоугольную логарифмическую линейку. В неизменном виде логарифмическая линейка существует и по сей день.

В 1673 г. известный немецкий философ и математик Готфрид Вильгельм Лейбниц изобрел механический калькулятор – более совершенную счетную машину, способную выполнять основные арифметические действия. При помощи двоичной системы счисления машина могла складывать, вычитать, умножать, делить и извлекать квадратные корни.

В 1700 г. Шарль Перро издал книгу своего брата «Сборник большого числа машин собственного изобретения Клода Перро». В книге описывается суммирующая машина с зубчатыми рейками вместо зубчатых колес под названием «рабдологический абак». Название машины состоит из двух слов: древнего «абак» и «рабдология» – средневековая наука о выполнении арифметических операций с помощью маленьких палочек с цифрами.

Готфрид Вильгейм Лейбниц в 1703 г., продолжая серию своих работ, пишет трактат «Explication de I"Arithmetique Binaire» об использовании двоичной системы счисления в вычислительных машинах. Позже, в 1727 г. на основе работ Лейбница была создана счетная машина Джакоба Леопольда.

Немецкий математик и астроном Христиан Людвиг Герстен в 1723 г. создал арифметическую машину. Машина высчитывала частное и число последовательных операций сложения при умножении чисел. Кроме того, была предусмотрена возможность контроля за правильностью ввода данных.

В 1751 г. француз Перера на основе идей Паскаля и Перро изобретает арифметическую машину. В отличие от других устройств она была компактнее, так как ее счетные колеса располагались не на параллельных осях, а на единственной оси, проходившей через всю машину.

В 1820 г. состоялся первый промышленный выпуск цифровых счетных машин арифмометров. Первенство принадлежит здесь французу Тома де Кальмару. В России к первым арифмометрам данного типа относятся самосчеты Буняковского (1867 г.). В 1874 г. инженер из Петербурга Вильгодт Однер значительно усовершенствовал конструкцию арифмометра, применив для ввода чисел колеса с выдвижными зубьями (колеса «Однера»). Арифмометр Однера позволял проводить вычислительные операции со скоростью до 250 действий с четырехзначными цифрами за один час.

Вполне возможно, что развитие цифровой техники вычислений так и осталось бы на уровне малых машин, если бы не открытие француза Жозефа Мари Жаккара, который в начале XIX века применил для управления ткацким станком карту с пробитыми отверстиями (перфокарту). Машина Жаккара программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока так, что при переходе к новому рисунку, оператор заменял одну колоду перфокарт другой. Учёные попытались использовать это открытие для создания принципиально новой счётной машины, выполняющейоперации без вмешательства человека.

В 1822 г. английский математик Чарльз Бэббидж создал программно-управляемую счетную машину, представляющую собой прототип сегодняшних периферийных устройств ввода и печати. Она состояла из вращаемых вручную шестеренок и валиков.

В конце 80-х гг. XIX века сотрудник национального бюро переписи населения США Герман Холлерит сумел разработать статистический табулятор, способный автоматически обрабатывать перфокарты. Создание табулятора положило начало производству нового класса цифровых счётно-перфорационных (счётно-аналитических) машин, которые отличались от класса малых машин оригинальной системой ввода данных с перфокарт. К середине XX века счетно-перфорационныемашины выпускались фирмами IBM и Remington Rand в виде достаточно сложных перфокомплексов. Они включали перфораторы (набивка перфокарт), контрольные перфораторы (повторная набивка и контроль несовпадения отверстий), сортировочные машины (раскладка перфокарт по группам в соответствии с определенными признаками), раскладочные машины (более тщательная раскладка перфокарт и составление таблиц функций), табуляторы (чтение перфокарт, вычисление и вывод на печать результатов расчета), мультиплееры (операции умножения для чисел, записанных на перфокартах). Лучшие модели перфокомплексов обрабатывали до 650 карт в минуту, а мультиплеер в течение часа умножал 870 восьмизначных чисел. Наиболее совершенная модель электронного перфоратора Model 604 фирмы IBM, выпущенная в 1948 г., имела программируемую панель команд обработки данных и обеспечивала возможность проведения до 60 операций с каждой перфокартой.

В начале XX века появились арифмометры с клавишами для ввода чисел. Повышение степени автоматизации работы арифмометров позволило создать счетные автоматы, или, так называемые, малые счетные машины с электроприводом и автоматическим выполнением за час до 3 тысяч операций с трех- и четырехзначными цифрами. В промышленном масштабе малые счетные машины в первой половине XX века выпускались компаниями Friden, Burroughs, Monro и др. Разновидностью малых машин являлись бухгалтерские счетно-записывающие и счетно-текстовые машины, выпускавшиеся в Европе фирмой Olivetti, а в США –- National Cash Register (NCR). В России в этот период были широко распространены «Мерседесы» – бухгалтерские машины, предназначенные для ввода данных и расчета конечных остатков (сальдо) по счетам синтетического учета.

Основываясь на идеях и изобретениях Бэббиджа и Холлерита, профессор Гарвардского университета Говард Эйкен смог создать в 1937 – 1943 гг. вычислительную перфорационную машину более высокого уровня под названием «Марк-1», которая работала на электромагнитных реле. В 1947 г. появилась машина данной серии «Марк-2», содержащая 13 тысяч реле.

Примерно в этот же период появились теоретические предпосылки и техническая возможность создания более совершенной машины на электрических лампах. В 1943 г. к разработке такой машины приступили сотрудники Пенсильванского университета (США) под руководством Джона Мочли и Проспера Эккерта, с участием знаменитого математика Джона фон Неймана. Результат их совместных усилий ламповая вычислительная машина ENIAC (1946 г.), которая содержала 18 тысяч ламп и потребляла 150 кВт электроэнергии. В процессе работы над ламповой машиной Джон фон Нейман опубликовал доклад (1945 г.), являющийся одним из наиболее важных научных документов теории развития вычислительной техники. В докладе были обоснованы принципы устройства и функционированияуниверсальных вычислительных машин нового поколения компьютеров, которые вобрали в себя все лучшее, что было создано многими поколениями ученых, теоретиков и практиков.

Это привело к созданию компьютеров, так называемого, первого поколения . Они характерны применением вакуумно-ламповой технологии, систем памяти на ртутных линиях задержки, магнитных барабанов и электронно-лучевых трубок Вильямса. Данные вводились с помощью перфолент, перфокарт и магнитных лент с хранимыми программами. Использовались печатающие устройства. Быстродействие компьютеров первого поколения не превышало 20 тыс. операций в секунду.

Далее развитие цифровой техники вычислений происходило быстрыми темпами. В 1949 г. по принципам Неймана английским исследователем Морисом Уилксом был построен первый компьютер. Вплоть до середины 50-х гг. в промышленном масштабе выпускались ламповые машины. Однако, научные исследования в области электроники открывали все новые перспективы развития. Ведущие позиции в этой области занимали США. В 1948 г. Уолтер Браттейн, Джон Бардин из компании AT&T изобрели транзистор, а в 1954 г. Гордон Тип из компании Texas Instruments применил для изготовления транзистора кремний. С 1955 года стали выпускаться компьютеры на транзисторах, имеющие меньшие габариты, повышенное быстродействие и пониженное потребление энергии в сравнении с ламповыми машинами. Сборка компьютеров проходила вручную, под микроскопом.

Применение транзисторов ознаменовало переход к компьютерам второго поколения . Транзисторы заменили электронные лампы и компьютеры стали более надежными и быстрыми(до 500 тысяч операций в секунду). Усовершенствовались и функциональные устройства – работы с магнитными лентами, памяти на магнитных дисках.

В 1958 г. были изобретены: первая интервальная микросхема (Джек Килби -Texas Instruments) и первая промышленная интегральная микросхема (Chip), автор которой Роберт Нойс основал впоследствии (1968 год) всемирно известную фирму Intel (INTegrated ELectronics). Компьютеры на интегральных микросхемах, выпуск которых был налажен с 1960 года, были еще более скоростными и малогабаритными.

В 1959 г. исследователи фирмы Datapoint сделали важный вывод о том, что компьютеру необходим центральный арифметико-логический блок, который мог бы управлять вычислениями, программами и устройствами. Речь шла о микропроцессоре. Сотрудники Datapoint разработали принципиальные технические решения по созданию микропроцессора и совместно с фирмой Intel в середине 60-х годов стали осуществлять его промышленную доводку. Первые результаты были не совсем удачными: микропроцессоры Intel работали гораздо медленнее, чем ожидалось. Сотрудничество Datapoint и Intel прекратилось.

В 1964 г. были разработаны компьютеры третьего поколения с применением электронных схем малой и средней степени интеграции (до 1000 компонентов на кристалл). С этого времени стали проектировать не отдельный компьютер, а скорее целое семейство компьютеров на базе применения программного обеспечения. Примером компьютеров третьего поколения можно считать созданные тогда американский IBM 360, а также советские ЕС 1030 и 1060. В конце 60-х гг. появились мини-компьютеры, а в 1971 г. – первый микропроцессор. Годом позже компания Intel выпускает первый широко известный микропроцессор Intel 8008, а в апреле 1974 г. – микропроцессор второго поколения Intel 8080.

С середины 70-х гг. были разработаны компьютеры четвертого поколения . Они характерны использованием больших и сверхбольших интегральных схем (до миллиона компонентов на кристалл). Первые компьютеры четвертого поколения выпустила фирма Amdahl Corp. В этих компьютерах использовались быстродействующие системы памяти на интегральных схемах емкостью несколько мегабайт. При выключении данные оперативной памяти переносились на диск. При включении проходила самозагрузка. Производительность компьютеров четвертого поколения – сотни миллионов операций в секунду.

Также в середине 70-х появились первые персональные компьютеры. Дальнейшая история компьютеров тесно связана с развитием микропроцессорной техники. В 1975 г. на основе процессора Intel 8080 был создан первый массовый персональный компьютер Альтаир. К концу 70-х гг., благодаря усилиям фирмы Intel, разработавшей новейшие микропроцессоры Intel 8086 и Intel 8088, возникли предпосылки для улучшения вычислительных и эргономических характеристик компьютеров. В этот период крупнейшая электротехническая корпорация IBM включилась в конкурентную борьбу на рынке и попыталась создать персональныйкомпьютер на основе процессора Intel 8088. В августе 1981 г. появился компьютер IBM PC, быстро завоевавший огромную популярность. Удачная конструкция IBM PC предопределила его использование в качестве стандарта персональных компьютеров конца XX в.

С 1982 г. ведутся разработки компьютеров пятого поколения . Их основой является ориентация на обработку знаний. Ученые уверены в том, что обработка знаний, свойственная только человеку, может вестись и компьютером с целью решения поставленных проблем и принятия адекватных решений.

В 1984 г. фирма Microsoft представила первые образцы операционной системы Windows. Американцы до сих пор считают это изобретение одним из выдающихся открытий XX в.

Важным оказалось предложение, сделанное в марте 1989 г. сотрудником международного европейского научного центра (CERN) Тимом Бернерс-Ли. Суть идеи состояла в создании новой распределенной информационной системы под названием World Wide Web. Информационная система на базе гипертекста смогла бы объединить информационныересурсы CERN (базы данных отчетов, документацию, почтовые адреса и т.д.). Проект был принят в 1990 г.

История возникновения информационных технологий уходит своими корнями в глубокую древность. Первым этапом можно считать изобретение простейшего цифрового устройства – счетов. Счеты были изобретены совершенно независимо и практически одновременно в Древней Греции, Древнем Риме, Китае, Японии и на Руси.

Счеты в Древней Греции назывались абак, то есть доска или еще «саламинская доска» (остров Саламин в Эгейском море). Абак представлял собой посыпанную песком доску с бороздками, на которых камешками обозначались числа. Первая бороздка означала единицы, вторая – десятки и т.д. Во время счета на любой из них могло набраться более 10 камешков, что означало добавлениеодного камешка в следующую бороздку. В Риме абак существовал в другом виде: деревянные доски заменили мраморными, шарики также делали из мрамора.

В Китае счеты «суан-пан» немного отличались от греческих и римских. В их основе лежало не число десять, а число пять. В верхней части «суан-пан» находились ряды по пять косточек-единиц, а в нижней части – по две. Если требовалось, скажем, отразить число восемь, в нижней части ставили одну косточку, а в части единиц – три. В Японии существовало аналогичное устройство, только название было уже «серобян».

На Руси счеты были значительно проще – кучка единиц и кучки десятков с косточками или камешками. Но в XV в. получит распространение «дощаный счет», то есть применение деревянной рамки с горизонтальными веревочками, на которых были нанизаны косточки.

Обычные счеты были родоначальниками современных цифровых устройств. Однако, если одни из объектов окружающего материального мира поддавались непосредственному счетному, поштучному исчислению, то другие требовалипредварительного измерения числовых величин. Соответственно, исторически сложились два направления развития вычислений и вычислительной техники: цифровое и аналоговое.

Аналоговое направление, основанное на исчислении неизвестного физического объекта (процесса) по аналогии с моделью известного объекта (процесса), получило наибольшее развитие в период конца XIX – середины XX века. Основоположником аналогового направления является автор идеи логарифмического исчисления шотландский барон – Джон Непер, подготовившийв 1614г. научный фолиант «Описание удивительной таблицы логарифмов». Джон Непер не только теоретически обосновал функции, но и разработал практическую таблицу двоичных логарифмов.

Принцип изобретения Джона Непера заключается в соответствии логарифма (показателя степени, в которую нужно возвести число) заданному числу. Изобретение упростило выполнение операций умножения и деления, так как при умножении достаточно сложить логарифмы чисел.

В 1617г. Непер изобрел способ перемножения чисел с помощью палочек. Специальное устройство состояло из разделенных на сегменты стерженьков, которые можно было располагать таким образом, что при сложении чисел в прилегающих друг к другу по горизонтали сегментах получался результат умножения этих чисел.

Несколько позднее англичанин Генри Бриггс составил первую таблицу десятичных логарифмов. На основе теории и таблиц логарифмов были созданы первые логарифмические линейки. В 1620 г. англичанин Эдмунд Гюнтер применил для расчетов на популярном в те времена пропорциональном циркуле специальную пластинку, на которую были нанесены параллельно друг другу логарифмы чисел и тригонометрических величин (так называемые «шкалы Гюнтера»). В 1623 г. Уильям Отред изобрел прямоугольную логарифмическую линейку, а Ричард Деламейн в 1630 г. – круговую. В 1775 г. библиотекарь Джон Робертсон добавил к линейке «бегунок», облегчающий считывание чисел с разных шкал. И, наконец, в 1851-1854 гг. француз Амедей Маннхейм резко изменил конструкцию линейки, придав ей почти что современный вид. Полное господство логарифмической линейки продолжалось вплоть до 20-30-х гг. XX века, пока не появились электрические арифмометры, которые позволяли проводить несложные арифметические вычисления с гораздо большей точностью. Логарифмическая линейка постепенно утратила свои позиции, но оказалась незаменимой для сложных тригонометрических вычислений и потому сохранилась и продолжает использоваться и в наши дни.

Большинство людей, пользующихся логарифмической линейкой, успешно проводит типовые вычислительные операции. Однако, сложные операции расчета интегралов, дифференциалов, моментов функций и т. д., которые осуществляются в несколько этапов по специальным алгоритмам и требуют хорошей математической подготовки, вызывают значительные затруднения. Все это обусловило появление в свое время целого класса аналоговых устройств, предназначенных для расчета конкретных математических показателей и величин пользователем, не слишком искушенным в вопросах высшей математики. В начале-середине XIX века были созданы: планиметр (вычисление площади плоских фигур), курвиметр (определение длины кривых), дифференциатор, интегратор, интеграф (графические результаты интегрирования), интегример (интегрирование графиков) и др. устройства. Автором первого планиметра (1814 г.) является изобретатель Германн. В 1854 г. появился полярный планиметр Амслера. С помощью интегратора фирмы «Коради» вычислялись первый и второй моменты функции. Существовали универсальные наборы блоков, например, комбинированный интегратор КИ-3, из которых пользователь в соответствии с собственными запросами, мог выбрать необходимое устройство.

Цифровое направление развития техники вычислений оказалось более перспективным и составляет сегодня основу компьютерной техники и технологии. Еще Леонардо да Винчи в начале XVI в. создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX в., все же реальность проекта Леонардо да Винчи подтвердилась.

В 1623 г. профессорВильгельм Шиккард в письмах И. Кеплеру описал устройство счетной машины, так называемых «часов для счета». Машина также не была построена, но сейчас на основе описания создана работающая ее модель.

Первая построенная механическая цифровая машина, способная суммировать числа с соответствующим увеличением разрядов, была создана французским философом и механиком Блэзом Паскалем в 1642 г. Назначением этой машины было облегчить работу отца Б. Паскаля – инспектора по сбору налогов. Машина имела вид ящика с многочисленными шестернями, среди которых находилась основная расчетная шестерня. Расчетная шестерня при помощи храпового механизма соединялись с рычагом, отклонение которого позволяло вводить в счетчик однозначные числа и проводить их суммирование. Проводить вычисления с многозначными числами на такой машине было достаточно сложно.

В 1657 г. два англичанина Р. Биссакар и С. Патридж совершенно независимо друг от друга разработали прямоугольную логарифмическую линейку. В неизменном виде логарифмическая линейка существует и по сей день.

В 1673 г. известный немецкий философ и математик Готфрид Вильгельм Лейбниц изобрел механический калькулятор – более совершенную счетную машину, способную выполнять основные арифметические действия. При помощи двоичной системы счисления машина могла складывать, вычитать, умножать, делить и извлекать квадратные корни.

В 1700 г. Шарль Перро издал книгу своего брата «Сборник большого числа машин собственного изобретения Клода Перро». В книге описывается суммирующая машина с зубчатыми рейками вместо зубчатых колес под названием «рабдологический абак». Название машины состоит из двух слов: древнего «абак» и «рабдология» – средневековая наука о выполнении арифметических операций с помощью маленьких палочек с цифрами.

Готфрид Вильгейм Лейбниц в 1703 г., продолжая серию своих работ, пишет трактат «Explication de I"Arithmetique Binaire» об использовании двоичной системы счисления в вычислительных машинах. Позже, В 1727 г. на основе работ Лейбница была создана счетная машина Джакоба Леопольда.

Немецкий математик и астроном Христиан Людвиг Герстен в 1723 г. создал арифметическую машину. Машина высчитывала частное и число последовательных операций сложения при умножении чисел. Кроме того была предусмотрена возможность контроля за правильностью ввода данных.

В 1751 г. француз Перера на основе идей Паскаля и Перро изобретает арифметическую машину. В отличие от других устройств она была компактнее, так как ее счетные колеса располагались не на параллельных осях, а на единственной оси, проходившей через всю машину.

В 1820 г. состоялся первый промышленный выпуск цифровых счетных машин арифмометров. Первенство принадлежит здесь французу Тома де Кальмару. В России к первым арифмометрам данного типа относятся самосчеты Буняковского (1867 г.). В 1874 г. инженер из Петербурга Вильгодт Однер значительно усовершенствовал конструкцию арифмометра, применив для ввода чисел колеса с выдвижными зубьями (колеса «Однера»). Арифмометр Однера позволял проводить вычислительные операции со скоростью до 250 действий с четырехзначными цифрами за один час.

Вполне возможно, что развитие цифровой техники вычислений так и осталось бы на уровне малых машин, если бы не открытие француза Жозефа Мари Жаккара, который в начале XIX века применил для управления ткацким станком карту с пробитыми отверстиями (перфокарту). Машина Жаккара программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока так, что при переходе к новому рисунку, оператор заменял одну колоду перфокарт другой. Учёные попытались использовать это открытие для создания принципиально новой счётной машины, выполняющейоперации без вмешательства человека.

В 1822 г. английский математик Чарльз Бэббидж создал программно-управляемую счетную машину, представляющую собой прототип сегодняшних периферийных устройств ввода и печати. Она состояла из вращаемых вручную шестеренок и валиков.

В конце 80-х гг. XIX века сотрудник национального бюро переписи населения США Герман Холлерит сумел разработать статистический табулятор, способный автоматически обрабатывать перфокарты. Создание табулятора положило начало производству нового класса цифровых счётно-перфорационных (счётно-аналитических) машин, которые отличались от класса малых машин оригинальной системой ввода данных с перфокарт. К середине XX века счетно-перфорационныемашины выпускались фирмами IBM и Remington Rand в виде достаточно сложных перфо-комплексов, включающих: перфораторы (набивка перфокарт), контрольные перфораторы (повторная набивка и контроль несовпадения отверстий), сортировочные машины (раскладка перфокарт по группам в соответствии с определенными признаками), раскладочные машины (более тщательная раскладка перфокарт и составление таблиц функций), табуляторы (чтение перфокарт, вычисление и вывод на печать результатов расчета), мультиплееры (операции умножения для чисел, записанных на перфокартах). Лучшие модели перфокомплексов обрабатывали до 650 карт в минуту, а мультиплеер в течение часа умножал 870 восьмизначных чисел. Наиболее совершенная модель электронного перфоратора Model 604 фирмы IBM, выпущенная в 1948 г., имела программируемую панель команд обработки данных и обеспечивала возможность проведения до 60 операций с каждой перфокартой .

В начале XX века появились арифмометры с клавишами для ввода чисел. Повышение степени автоматизации работы арифмометров позволило создать счетные автоматы, или, так называемые, малые счетные машины с электроприводом и автоматическим выполнением за час до 3 тысяч операций с трех- и четырехзначными цифрами. В промышленном масштабе малые счетные машины в первой половине XX века выпускались компаниями Friden, Burroughs, Monro и др. Разновидностью малых машин являлись бухгалтерские счетно-записывающие и счетно-текстовые машины, выпускавшиеся в Европе фирмой Olivetti, а в США –- National Cash Register (NCR). В России в этот период были широко распространены «Мерседесы» – бухгалтерские машины, предназначенные для ввода данных и расчета конечных остатков (сальдо) по счетам синтетического учета.

Основываясь на идеях и изобретениях Бэббиджа и Холлерита, профессор Гарвардского университета Говард Эйкен смог создать в 1937 – 1943 гг. вычислительную перфорационную машину более высокого уровня под названием «Марк-1», которая работала на электромагнитных реле. В 1947 г. появилась машина данной серии «Марк-2», содержащая 13 тысяч реле.

Примерно в этот же период появились теоретические предпосылки и техническая возможность создания более совершенной машины на электрических лампах. В 1943 г. к разработке такой машины приступили сотрудники Пенсильванского университета (США) под руководством Джона Мочли и Проспера Эккерта, с участием знаменитого математика Джона фон Неймана. Результат их совместных усилий ламповая вычислительная машина ENIAC (1946 г.), которая содержала 18 тысяч ламп и потребляла 150 кВт электроэнергии. В процессе работы над ламповой машиной Джон фон Нейман опубликовал доклад (1945 г.), являющийся одним из наиболее важных научных документов теории развития вычислительной техники. В докладе были обоснованы принципы устройства и функционированияуниверсальных вычислительных машин нового поколения компьютеров, которые вобрали в себя все лучшее, что было создано многими поколениями ученых, теоретиков и практиков.

Это привело к созданию компьютеров, так называемого, первого поколения. Они характерны применением вакуумно-ламповой технологии, систем памяти на ртутных линиях задержки, магнитных барабанов и электронно-лучевых трубок Вильямса. Данные вводились с помощью перфолент, перфокарт и магнитных лент с хранимыми программами. Использовались печатающие устройства. Быстродействие компьютеров первого поколения не превышало 20 тыс. операций в секунду.

Далее развитие цифровой техники вычислении происходило быстрыми темпами. В 1949 г. по принципам Неймана английским исследователем Морисом Уилксом был построен первый компьютер. Вплоть до середины 50-х гг. в промышленном масштабе выпускались ламповые машины. Однако, научные исследования в области электроники открывали все новые перспективы развития. Ведущие позиции в этой области занимали США. В 1948 г. Уолтер Браттейн, Джон Бардин из компании AT&T изобрели транзистор, а в 1954 г. Гордон Тип из компании Texas Instruments применил для изготовления транзистора кремний. С 1955 года стали выпускаться компьютеры на транзисторах, имеющие меньшие габариты, повышенное быстродействие и пониженное потребление энергии в сравнении с ламповыми машинами. Сборка компьютеров проходила вручную, под микроскопом.

Применение транзисторов ознаменовало переход к компьютерам второго поколения. Транзисторы заменили электронные лампы и компьютеры стали более надежными и быстрыми(до 500 тысяч операций в секунду). Усовершенствовались и функциональные устройства – работы с магнитными лентами, памяти на магнитных дисках.

В 1958 г. были изобретены: первая интервальная микросхема (Джек Килби -Texas Instruments) и первая промышленная интегральная микросхема (Chip), автор которой Роберт Нойс основал впоследствии (1968 год) всемирно известную фирму Intel (INTegrated ELectronics). Компьютеры на интегральных микросхемах, выпуск которых был налажен с 1960 года, были еще более скоростными и малогабаритными.

В 1959 г. исследователи фирмы Datapoint сделали важный вывод о том, что компьютеру необходим центральный арифметико-логический блок, который мог бы управлять вычислениями, программами и устройствами. Речь шла о микропроцессоре. Сотрудники Datapoint разработали принципиальные технические решения по созданию микропроцессора и совместно с фирмой Intel в середине 60-х годов стали осуществлять его промышленную доводку. Первые результаты были не совсем удачными микропроцессоры Intel работали гораздо медленнее, чем ожидалось. Сотрудничество Datapoint и Intel прекратилось.

В 1964 г. были разработаны компьютеры третьего поколения с применением электронных схем малой и средней степени интеграции (до 1000 компонентов на кристалл). С этого времени стали проектировать не отдельный компьютер, а скорее целое семейство компьютеров на базе применения программного обеспечения. Примером компьютеров третьего поколения можно считать созданные тогда американский IBM 360, а также советские ЕС 1030 и 1060. В конце 60-х гг. появились мини-компьютеры, а в 1971 г. – первый микропроцессор. Годом позже компания Intel выпускает первый широко известный микропроцессор Intel 8008, а в апреле 1974 г. – микропроцессор второго поколения Intel 8080.

С середины 70-х гг. были разработаны компьютеры четвертого поколения. Они характерны использованием больших и сверхбольших интегральных схем (до миллиона компонентов на кристалл). Первые компьютеры четвертого поколения выпустила фирма Amdahl Corp. В этих компьютерах использовались быстродействующие системы памяти на интегральных схемах емкостью несколько мегабайт. При выключении данные оперативной памяти переносились на диск. При включении проходила самозагрузка. Производительность компьютеров четвертого поколения – сотни миллионов операций в секунду.

Также в середине 70-х появились первые персональные компьютеры. Дальнейшая история компьютеров тесно связана с развитием микропроцессорной техники. В 1975 г. на основе процессора Intel 8080 был создан первый массовый персональный компьютер Альтаир. К концу 70-х гг., благодаря усилиям фирмы Intel, разработавшей новейшие микропроцессоры Intel 8086 и Intel 8088, возникли предпосылки для улучшения вычислительных и эргономических характеристик компьютеров. В этот период крупнейшая электротехническая корпорация IBM включилась в конкурентную борьбу на рынке и попыталась создать персональныйкомпьютер на основе процессора Intel 8088. В августе 1981 г. появился компьютер IBM PC, быстро завоевавший огромную популярность. Удачная конструкция IBM PC предопределила его использование в качестве стандарта персональных компьютеров конца XX в.

С 1982 г. ведутся разработки компьютеров пятого поколения. Их основой является ориентация на обработку знаний. Ученые уверены в том, что обработка знаний, свойственная только человеку, может вестись и компьютером с целью решения поставленных проблем и принятия адекватных решений.

В 1984 г. фирма Microsoft представила первые образцы операционной системы Windows. Американцы до сих пор считают это изобретение одним из выдающихся открытий XX в.

Важным оказалось предложение, сделанное в марте 1989 г. сотрудником международного европейского научного центра (CERN) Тимом Бернерс-Ли. Суть идеи состояла в создании новой распределенной информационной системы под названием World Wide Web. Информационная система на базе гипертекста смогла бы объединить информационныересурсы CERN (базы данных отчетов, документацию, почтовые адреса и т.д.). Проект был принят в 1990 г.

Итоги научных и прикладных изысканий в области информатики вычислительной техники и связи сотворили крепкую базу для происхождения новой ветви умения и производства информационной индустрии. составляет инфраструктуру и информационное пространство для осуществления информатизации социума. Этапы возникновения и развития информационной технологии В самом начале ситуации для синхронизации выполняемых влияние человеку потребовались кодированные сигналы общения. Представление информаций думает самообладание Двух объектов: источника информаций и...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Другие похожие работы, которые могут вас заинтересовать.вшм>

16540. Эффективность информационных технологий коммерческой организации 74.47 KB
Эффективность затрат на ИТ можно рассматривать с двух позиций. Во-первых, можно проанализировать статистическую зависимость между затратами ресурсов (материальных, людских, финансовых)
11793. Изучение информационных технологий тайм-менеджмента 1.24 MB
В современном обществе, при внедрении тайм-менеджмента в сферу управленческой деятельности компании, стали активно использоваться информационные технологии. Различное программное обеспечение используются в рамках рациональной организации труда, широкий спектр возможностей которых позволяет выбрать наиболее удобный и эффективный инструмент для планирования, организации, координации, мотивирования и контроля хода выполнения работ, что в итоге повысит эффективность деятельности организации.
11230. Использование информационных технологий в системе «Школа-Вуз» 7.51 KB
С введением Единого государственного экзамена как формы итоговой аттестации учащихся-выпускников общеобразовательной школы и, одновременно, как формы вступительных испытаний в вузы, возникла необходимость еще более тесного взаимодействия средних учебных заведений и высшей школы. Другим важным фактором сближения вузовского и школьного образования является переход на двухуровневую систему в высших учебных заведениях – бакалавриат и магистратуру.
17906. Исследование информационных технологий в спортивной сфере 41.22 KB
Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать обрабатывать систематизировать и использовать информацию с помощью компьютеров соответствующего программного обеспечения телекоммуникационных средств. Для улучшения управления тренировочным процессом необходимо создавать прикладные программные продукты ППП и автоматизированные системы обработки информации. Разработка систем для усиления этой стороны ведется в направлении создания индивидуальных программно-аппаратных комплексов...
11275. Использование информационных технологий в управлении образованием 7.57 KB
Это уровни: школа дошкольные учреждения район город На уровне школы решаются задачи: автоматизация школьного делопроизводства база данных по персоналу школы база данных по ученикам и родителям контроль выполнения учебных планов контроль успеваемости и тестирование учеников автоматизация всех видов статистической отчетности учет материальных ценностей юридическое сопровождение деятельности школы На уровне района или города это: автоматизация делопроизводства база данных по персоналу Управления база данных по администрации учебных заведений...
17366. Использование корпоративных информационных технологий «Альтруист» Люксор 69.84 KB
Корпоративные информационные технологии должны обеспечить централизованную и распределенную обработку данных доступ пользователей и прикладных задач к централизованным и распределенным базам данных и знаний обеспечивать эффективную балансировку загрузки системы в целом. Управление – важнейшая функция без которой немыслима целенаправленная деятельность любой социально-экономической организационно-производственной системы предприятия организации территории1. Управление связано с обменом информацией между компонентами системы а также...
15028. Анализ особенностей информационных технологий в банковской системе 30.2 KB
Для детального изучения данной цели следует выделить следующие задачи для раскрытия темы: - провести анализ существующих информационных технологий в российском банковском секторе и их роль в развитии банковских операций; - рассмотреть особенности развития информационных банковских технологий; -выявить необходимость усиления информационной безопасности банковского сектора. Использование Интернета для обслуживания клиентов явилось логическим развитием технологии home bnking. Впервые такую услугу внедрили крупные британские компании объединившие...
17304. Использование информационных технологий и систем при проведении выборов в РФ 271.03 KB
Выборы являются формой реализации и защиты гражданами собственных экономических и социальных интересов. Поэтому угрозы чрезвычайных ситуаций в избирательном процессе являются угрозами политической и социальной стабильности общества, а следовательно – угрозами национальной безопасности России.
11220. Внедрение информационных технологий контроля качества образовательного процесса 6.17 KB
Внедрение информационных технологий контроля качества образовательного процесса В современной образовательной системе все большее внимание уделяется качеству получаемых знаний основанных на использовании современных информационных технологий. Особенно это касается образовательных учреждений в которых они призваны обеспечить качество учебного процесса сделать его прозрачным простым в понимании гибким в управлении и готовым к немедленной реакции на вызовы современного рынка труда для подготовки востребованных...
12560. Изучение теоретических основ информационных технологий обеспечения управленческой деятельности 1.24 MB
Поэтому сейчас все фирмы от организаций малого и среднего бизнеса до крупных промышленных комплексов разрабатывают и внедряют автоматизированные информационные системы поддержки своей деятельности. Практическая где на конкретном предприятие показан процесс внедрения и использования системы...

Основные данные о работе

Введение

Глава 1. Развитие информационных технологий в период с XIV по XVII век

Глава 2. Развитие информационных технологий с XVIII по XX век

Заключение

Глоссарий

Список использованных источников

Список сокращений

Введение

Я выбрала эту тему, потому что считаю ее интересной и актуальной. Далее я попытаюсь объяснить, почему я сделала такой выбор и изложу некоторые исторические данные по этой теме.

В истории человечества можно выделить несколько этапов, которые человеческое общество последовательно проходило в своем развитии. Эти этапы различаются основным способом обеспечения обществом своего существования и видом ресурсов, использующимся человеком и играющим главную роль при реализации данного способа. К таким этапам относятся: этапы собирательства и охоты, аграрный и индустриальный. В наше время наиболее развитые страны мира находятся на завершающей стадии индустриального этапа развития общества. В них осуществляется переход к следующему этапу, который назван "информационным". В данном обществе определяющая роль принадлежит информации. Инфраструктуру общества формируют способы и средства сбора, обработки, хранения и распределения информации. Информация становится стратегическим ресурсом.

Поэтому со второй половины ХХ века в цивилизованном мире основным, определяющим фактором социально-экономического развития общества становится переход от "экономики вещей" к "экономике знаний", происходит существенное увеличение значения и роли информации в решении практически всех задач мирового сообщества. Это является убедительным доказательством того, что научно-техническая революция постепенно превращается в интеллектуально-информационную, информация становится не только предметом общения, но и прибыльным товаром, безусловным и эффективным современным средством организации и управления общественным производством, наукой, культурой, образованием и социально-экономическим развитием общества в целом.

Современные достижения информатики, вычислительной техники, оперативной полиграфии и телекоммуникации породили новый вид высокой технологии, а именно информационную технологию.

Результаты научных и прикладных исследований в области информатики, вычислительной техники и связи создали прочную базу для возникновения новой отрасли знания и производства - информационной индустрии. В мире успешно развивается индустрия информационных услуг, компьютерного производства и компьютеризация, как технология автоматизированной обработки информации; небывалого размаха и качественного скачка достигла индустрия и технология в области телекоммуникации - от простейшей линии связи до космической, охватывающей миллионы потребителей и представляющей широкий спектр возможностей по транспортировке информации и взаимосвязи ее потребителей.

Весь этот комплекс (потребитель с его задачами, информатика, все технические средства информационного обеспечения, информационная технология и индустрия информационных услуг и др.) составляет инфраструктуру и информационное пространство для осуществления информатизации общества.

Таким образом, информатизация это комплексный процесс информационного обеспечения социально-экономического развития общества на базе современных информационных технологий и соответствующих технических средств.

И поэтому проблема информатизации общества стала приоритетной и значение ее в обществе постоянно нарастает.

Глава 1. Развитие информационных технологий в период с XIV по XVIII век

История создания средств цифровой вычислительной техники уходит вглубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.

В дневниках гениального итальянца Леонардо да Винчи (1452 - 1519), уже в наше время был обнаружен ряд рисунков, которые оказались эскизным наброском суммирующей вычислительной машины на зубчатых колесах, способной складывать 13- разрядные десятичные числа. Специалисты известной американской фирмы IBM воспроизвели машину в металле и убедились в полной состоятельности идеи ученого. Его суммирующую машину можно считать изначальной вехой в истории цифровой вычислительной техники. Это был первый цифровой сумматор, своеобразный зародыш будущего электронного сумматора - важнейшего элемента современных ЭВМ, пока еще механический, очень примитивный (с ручным управлением). В те далекие от нас годы гениальный ученый был, вероятно, единственным на Земле человеком, который понял необходимость создания устройств для облегчения труда при выполнении вычислений.

Однако потребность в этом была настолько малой, что лишь через сто с лишним лет после смерти Леонардо да Винчи нашелся другой европеец - немецкий ученый Вильгельм Шиккард (1592-1636), не читавший, естественно, дневников великого итальянца, который предложил свое решение этой задачи. Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И.Кеплером. Ознакомившись с работой великого астронома, связанной, в основном, с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме, на его имя, отправленном в 1623 г., он приводит рисунок машины и рассказывает как она устроена. К сожалению, данных о дальнейшей судьбе машины история не сохранила. По-видимому, ранняя смерть от чумы, охватившей Европу, помешала ученому выполнить его замысел.

Об изобретениях Леонардо да Винчи и Вильгельма Шиккарда стало известно лишь в наше время. Современникам они были неизвестны.

В XYII веке положение меняется. В 1641 - 1642 гг. девятнадцатилетний Блез Паскаль (1623 - 1662), тогда еще мало кому известный французский ученый, создает действующую суммирующую машину ("паскалину") см. приложение А. В начале он сооружал ее с одной единственной целью - помочь отцу в расчетах, выполняемых при сборе налогов. В последующие четыре года им были созданы более совершенные образцы машины. Они были шести и восьми разрядными, строились на основе зубчатых колес, могли производить суммирование и вычитание десятичных чисел. Было создано примерно 50 образцов машин, Б.Паскаль получил королевскую привилегию на их производство, но практического применения "паскалины" не получили, хотя о них много говорилось и писалось (в основном, во Франции).

В 1673г. другой великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646 - 1716), создает счетную машину (арифметический прибор, по словам Лейбница) для сложения и умножения двенадцатиразрядных десятичных чисел. К зубчатым колесам он добавил ступенчатый валик, который позволял осуществлять умножение и деление. "...Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию", - писал В. Лейбниц одному из своих друзей.

В цифровых электронных вычислительных машинах (ЭВМ), появившихся более двух веков спустя, устройство, выполняющее арифметические операции (те же самые, что и "арифметический прибор" Лейбница), получило название арифметического. Позднее, по мере добавления ряда логических действий, его стали называть арифметико-логическим. Оно стало основным устройством современных компьютеров.

Таким образом, два гения XVII века, установили первые вехи в истории развития цифровой вычислительной техники.

Заслуги В.Лейбница, однако, не ограничиваются созданием "арифметического прибора". Начиная со студенческих лет и до конца жизни он занимался исследованием свойств двоичной системы счисления, ставшей в дальнейшем, основной при создании компьютеров. Он придавал ей некий мистический смысл и считал, что на ее базе можно создать универсальный язык для объяснения явлений мира и использования во всех науках, в том числе в философии. Сохранилось изображение медали, нарисованное В.Лейбницем в 1697 г., поясняющее соотношение между двоичной и десятичной системами исчисления (см. приложение Б).

В 1799 г. во Франции Жозеф Мари Жакар (1752 - 1834) изобрел ткацкий станок, в котором для задания узора на ткани использовались перфокарты. Необходимые для этого исходные данные записывались в виде пробивок в соответствующих местах перфокарты. Так появилось первое примитивное устройство для запоминания и ввода программной (управляющей ткацким процессом в данном случае) информации.

В 1795 г. там же математик Гаспар Прони (1755 - 1839), которому французское правительство поручило выполнение работ, связанных с переходом на метрическую систему мер, впервые в мире разработал технологическую схему вычислений, предполагающую разделение труда математиков на три составляющие. Первая группа из нескольких высококвалифицированных математиков определяла (или разрабатывала) методы численных вычислений, необходимые для решения задачи, позволяющие свести вычисления к арифметическим операциям - сложить, вычесть, умножить, разделить. Задание последовательности арифметических действий и определение исходных данных, необходимых при их выполнении ("программирование") осуществляла вторая, несколько более расширенная по составу, группа математиков. Для выполнения составленной "программы", состоящей из последовательности арифметических действий, не было необходимости привлекать специалистов высокой квалификации. Эта, наиболее трудоемкая часть работы, поручалась третьей и самой многочисленной группе вычислителей. Такое разделение труда позволило существенно ускорить получение результатов и повысить их надежность. Но главное состояло в том, что этим был дан импульс дальнейшему процессу автоматизации, самой трудоемкой (но и самой простой!) третьей части вычислений - переходу к созданию цифровых вычислительных устройств с программным управлением последовательностью арифметических операций.

Этот завершающий шаг в эволюции цифровых вычислительных устройств (механического типа) сделал английский ученый Чарльз Беббидж (1791 - 1871). Блестящий математик, великолепно владеющий численными методами вычислений, уже имеющий опыт в создании технических средств для облегчения вычислительного процесса (разностная машина Беббиджа для табулирования полиномов, 1812 - 1822гг.), он сразу увидел в технологии вычислений, предложенной Г.Прони, возможность дальнейшего развития своих работ. Аналитическая машина (так назвал ее Беббидж), проект которой он разработал в 1836 - 1848 годах, явилась механическим прототипом появившихся спустя столетие ЭВМ. В ней предполагалось иметь те же, что и в ЭВМ пять основных устройств: арифметическое, памяти, управления, ввода, вывода.

Для арифметического устройства Ч. Беббидж использовал зубчатые колеса, подобные тем, что использовались ранее (см.приложение В). На них же Ч. Беббидж намеревался построить устройство памяти из 1000 пятидесятиразрядных регистров (по 50 колес в каждом). Программа выполнения вычислений записывалась на перфокартах, на них же записывались исходные данные и результаты вычислений. В число операций, помимо четырех арифметических, была включена операция условного перехода и операции с кодами команд. Автоматическое выполнение программы вычислений обеспечивалось устройством управления. Время сложения двух пятидесятиразрядных десятичных чисел составляло, по расчетам ученого, 1 сек, умножения - 1 мин.

Механический принцип построения устройств, использование десятичной системы счисления, затрудняющей создание простой элементной базы, не позволили Ч. Беббиджу полностью реализовать свой далеко идущий замысел, пришлось ограничиться скромными макетами. Иначе, по размерам машина сравнялась бы с локомотивом, и чтобы привести в движение ее устройства понадобился бы паровой двигатель.

Программы вычислений на машине Беббиджа, составленные дочерью Байрона Адой Августой Лавлейс (1815 - 1852), поразительно схожи с программами, составленными, впоследствии, для первых ЭВМ. Не случайно замечательную женщину назвали первым программистом мира.

Еще более изумляют ее высказывания по поводу возможностей машины:

"... Нет конца демаркационной линии, ограничивающей возможности аналитической машины. Фактически аналитическую машину можно рассматривать как материальное и механическое выражение анализа".

Несмотря на все старания Ч.Беббиджа и А.Лавлейс машину построить не удалось... Современники, не видя конкретного результата, разочаровались в работе ученого. Он опередил свое время. И сам понимал это: "Вероятно пройдет половина столетия, прежде чем кто-нибудь возмется за такую малообещающую задачу без тех указаний, которые я оставил после себя. И если некто, не предостереженный моим примером, возьмет на себя эту задачу и достигнет цели в реальном конструировании машины, воплощающей в себя всю исполнительную часть математического анализа с помощью простых механических или других средств, я не побоюсь поплатиться своей репутацией в его пользу, т.к. только он один полностью сможет понять характер моих усилий и ценность их результатов". После смерти Ч.Беббиджа Комитет Британской научной ассоциации, куда входили крупные ученые, рассмотрел вопрос, что делать с неоконченной аналитической машиной и для чего она может быть рекомендована.

К чести Комитета было сказано: "...Возможности аналитической машины простираются так далеко, что их можно сравнить только с пределами человеческих возможностей... Успешная реализация машины может означать эпоху в истории вычислений, равную введению логарифмов".

Еще один выдающийся англичанин оказался непонятым, это был Джордж Буль (1815 - 1864). Разработанная им алгебра логики (алгебра Буля) нашла применение лишь в следующем веке, когда понадобился математический аппарат для проектирования схем ЭВМ, использующих двоичную систему счисления. "Соединил" математическую логику с двоичной системой счисления и электрическими цепями американский ученый Клод Шенон в своей знаменитой диссертации (1936г.).

Глава 2 . История развития информаци онных технологий с XVIII по XX век

Через 63 года после смерти Ч.Беббиджа нашелся "некто" взявший на себя задачу создать машину, подобную - по принципу действия, той, которой отдал жизнь Ч.Беббидж. Им оказался немецкий студент Конрад Цузе (1910 - 1985). Работу по созданию машины он начал в 1934г., за год до получения инженерного диплома. Конрад не знал ни о машине Беббиджа, ни о работах Лейбница, ни о алгебре Буля, которая подходит для того, чтобы проектировать схемы с использованием элементов, имеющих лишь два устойчивых состояния.

Тем не менее, он оказался достойным наследником В.Лейбница и Дж.Буля поскольку вернул к жизни уже забытую двоичную систему исчисления, а при расчете схем использовал нечто подобное булевой алгебре. В 1937г. машина Z1 (что означало Цузе 1) была готова и заработала.

Она была подобно машине Беббиджа чисто механической. Использование двоичной системы сотворило чудо - машина занимала всего два квадратных метра на столе в квартире изобретателя. Длина слов составляла 22 двоичных разряда. Выполнение операций производилось с использованием плавающей запятой. Для мантиссы и ее знака отводилось 15 разрядов, для порядка - 7. Память (тоже на механических элементах) содержала 64 слова (против 1000 у Беббиджа, что тоже уменьшило размеры машины). Числа и программа вводилась вручную. Через год в машине появилось устройство ввода данных и программы, использовавшее киноленту, на которую перфорировалась информация, а механическое арифметическое устройство заменило АУ последовательного действия на телефонных реле. В этом К.Цузе помог австрийский инженер Гельмут Шрайер, специалист в области электроники. Усовершенствованная машина получила название Z2. В 1941 г. Цузе с участием Г. Шрайера создает релейную вычислительную машину с программным управлением (Z3), содержащую 2000 реле и повторяющую основные характеристики Z1 и Z2. Она стала первой в мире полностью релейной цифровой вычислительной машиной с программным управлением и успешно эксплуатировалась. Ее размеры лишь немного превышали размеры Z1 и Z2.

Еще в 1938 г. Г.Шрайер, предложил использовать для построения Z2 электронные лампы вместо телефонных реле. К.Цузе не одобрил его предложение. Но в годы Второй мировой войны он сам пришел к выводу о возможности лампового варианта машины. Они выступили с этим сообщением в кругу ученых мужей и подверглись насмешкам и осуждению. Названная ими цифра - 2000 электронных ламп, необходимых для построения машины, могла остудить самые горячие головы. Лишь один из слушателей поддержал их замысел. Они не остановились на этом и представили свои соображения в военное ведомство, указав, что новая машина могла бы использоваться для расшифровки радиограмм союзников.

Но шанс создать в Германии не только первую релейную, но и первую в мире электронную вычислительную машину был упущен.

К этому времени К.Цузе организовал небольшую фирму, и ее усилиями были созданы две специализированные релейные машины S1 и S2. Первая - для расчета крыльев "летающих торпед" - самолетов-снарядов, которыми обстреливался Лондон, вторая - для управления ими. Она оказалась первой в мире управляющей вычислительной машиной.

К концу войны К. Цузе создает еще одну релейную вычислительную машину - Z4. Она окажется единственной сохранившейся из всех машин, разработанных им. Остальные будут уничтожены при бомбежке Берлина и заводов, где они выпускались.

И так, К.Цузе установил несколько вех в истории развития компьютеров: первым в мире использовал при построении вычислительной машины двоичную систему исчисления (1937г.), создал первую в мире релейную вычислительную машину с программным управлением (1941г.) и цифровую специализированную управляющую вычислительную машину (1943г.).

Эти воистину блестящие достижения, однако, существенного влияния на развитие вычислительной техники в мире не оказали.

Дело в том, что публикаций о них и какой-либо рекламы из-за секретности работ не было, и поэтому о них стало известно лишь спустя несколько лет после завершения Второй мировой войны.

По другому развивались события в США. В 1944 г. ученый Гарвардского университета Говард Айкен (1900-1973) создает первую в США (тогда считалось первую в мире.) релейно-механическую цифровую вычислительную машину МАРК-1. По своим характеристикам (производительность, обьем памяти) она была близка к Z3, но существенно отличалась размерами (длина 17м, высота 2,5м, вес 5 тонн, 500 тысяч механических деталей).

В машине использовалась десятичная система счисления. Как и в машине Беббиджа в счетчиках и регистрах памяти использовались зубчатые колеса. Управление и связь между ними осуществлялась с помощью реле, число которых превышало 3000. Г.Айкен не скрывал, что многое в конструкции машины он заимствовал у Ч. Беббиджа. "Если бы был жив Беббидж, мне нечего было бы делать", - говорил он. Замечательным качеством машины была ее надежность. Установленная в Гарвардском университете она проработала там 16 лет.

Вслед за МАРК-1 ученый создает еще три машины (МАРК-2, МАРК-3 и МАРК-4) и тоже с использованием реле, а не электронных ламп, объясняя это ненадежностью последних.

В отличие от работ Цузе, которые велись с соблюдением секретности, разработка МАРК1 проводилась открыто и о создании необычной по тем временам машины быстро узнали во многих странах. Дочь К.Цузе, работавшая в военной разведке и находившаяся в то время в Норвергии, прислала отцу вырезку из газеты, сообщающую о грандиозном достижении американского ученого.

К.Цузе мог торжествовать. Он во многом опередил появившегося соперника. Позднее он направит ему письмо и скажет об этом. А правительство Германии в 1980г. выделит ему 800 тыс. марок для воссоздания Z1, что он и осуществил вместе с помогавшими ему студентами. Своего воскресшего первенца К.Цузе передал на вечное хранение в музей вычислительной техники в Падеборне.

Продолжить рассказ о Г.Айкене хочется любопытным эпизодом. Дело в том, что работы по созданию МАРК1 выполнялись на производственных помещениях фирмы IBM. Ее руководитель в то время Том Уотсон, любивший порядок во всем, настоял, чтобы огромная машина была "одета" в стекло и сталь, что делало ее очень респектабельной. Когда машину перевезли в университет и представили публике, то имя Т.Уотсона в числе создателей машины не было упомянуто, что страшно разозлило руководителя IBM, вложившего в создание машины полмиллиона долларов. Он решил "утереть нос" Г.Айкену. В результате появился релейно-электронный монстр, в огромных шкафах которого размещались 23тыс. реле и 13тыс. электронных ламп. Машина оказалась не работоспособной. В конце-концов она была выставлена в Нью Йорке для показа неискушенной публике. На этом гиганте завершился период электро-механических цифровых вычислительных машин.

Что касается Г.Айкена, то, вернувшись в университет, он первым в мире, начал чтение лекций по новому тогда предмету, получившему сейчас название Computer Science - наука о компьютерах, он же, один из первых предложил использовать машины в деловых расчетах и бизнесе. Побудительным мотивом для создания МАРК-1 было стремление ГАйкена помочь себе в многочисленных расчетах, которые ему приходилось делать при подготовке диссертационной работы (посвященной, кстати, изучению свойств электронных ламп).

Однако, уже надвигалось время, когда объем расчетных работ в развитых странах стал нарастать как снежный ком, в первую очередь в области военной техники, чему способствовала Вторая мировая война.

В 1941 г. сотрудники лаборатории баллистических исследований Абердинского артиллерийского полигона в США обратились в расположенную неподалеку техническую школу при Пенсильванском университете за помощью в составлении таблиц стрельбы для артиллерийских орудий, уповая на имевшийся в школе дифференциальный анализатор Буша - громоздкое механическое аналоговое вычислительное устройство. Однако, сотрудник школы физик Джон Мочли (1907-1986), увлекавшийся метереологией и смастеривший для решения задач в этой области несколько простейших цифровых устройств на электронных лампах, предложил нечто иное. Им было составлено (в августе 1942г.) и отправлено в военное ведомство США предложение о создании мощного компьютера (по тем временам) на электронных лампах. Эти, воистину исторические пять страничек были положены военными чиновниками под сукно, и предложение Мочли, вероятно, осталось бы без последствий, если бы им не заинтересовались сотрудники полигона. Они добились финансирования проекта, и в апреле 1943 г. был заключен контракт между полигоном и Пенсильванским университетом на создание вычислительной машины, названной электронным цифровым интегратором и компьютером (ЭНИАК). На это отпускалось 400 тыс. долларов. К работе было привлечено около 200 человек, в том числе несколько десятков математиков и инженеров.

Руководителями работы стали Дж. Мочли и талантливый инженер-электронщик Преспер Эккерт (1919 - 1995). Именно он предложил использовать для машины забракованные военными представителями электронные лампы (их можно было получить бесплатно). Учитывая, что требуемое количество ламп приближалось к 20тысячам, а средства, выделенные на создание машины, весьма ограничены, - это было мудрым решением. Он же предложил снизить напряжение накала ламп, что существенно увеличило надежность их работы. Напряженная работа завершилась в конце 1945 года. ЭНИАК был предъявлен на испытания и успешно их выдержал. В начале 1946г. машина начала считать реальные задачи. По размерам она была более впечатляющей, чем МАРК-1: 26м в длину, 6м в высоту, вес 35тонн. Но поражали не размеры, а производительность - она в 1000 раз превышала производительность МАРК_1. Таков был результат использования электронных ламп!

В остальном ЭНИАК мало чем отличался от МАРК-1. В нем использовалась десятичная система исчисления. Разрядность слов - 10десятичных разрядов. Емкость электронной памяти - 20слов. Ввод программ - с коммутационного поля, что вызывало массу неудобств: смена программы занимала многие часы и даже дни.

В 1945г., когда завершались работы по созданию ЭНИАК, и его создатели уже разрабатывали новый электронный цифровой компьютер ЭДВАК в котором намеривались размещать программы в оперативной памяти, чтобы устранить основной недостаток ЭНИАКа - сложность ввода программ вычислений, к ним в качестве консультанта был направлен выдающийся математик, участник Матхеттенского проекта по созданию атомной бомбы Джон фон Нейман (1903-1957). Следует сказать, что разработчики машины, судя по всему, не просили этой помощи. Дж.Нейман, вероятно, сам проявил инициативу, услышав от своего приятеля Г.Голдстайна, математика, работавшего в военном ведомстве, об ЭНИАКе. Он сразу оценил перспективы развития новой техники и принял самое активное участие в завершении работ по созданию ЭДВАКа. Написанная им часть отчета по машине, содержала общее описание ЭДВАКа и основные принципы построения машины (1945г.).

Она была размножена Г.Голдстайном (без согласования с Дж. Мочли и П. Эккертом) и разослана в ряд организаций. В 1946г. Нейманом, Голдстайном и Берксом (все трое работали в Принстонском институте перспективных исследований) был составлен еще один отчет ("Предварительное обсуждение логического конструирования устройства", июнь 1946г.), который содержал развернутое и детальное описание принципов построения цифровых электронных вычислительных машин. В том же году отчет был распространен на летней сессии Пенсильванского университета.

Изложенные в отчете принципы сводились к следующему.

1. Машины на электронных элементах должны работать не в десятичной, а двоичной системе исчисления.

2. Программа должна размещаться в одном из блоков машины - в запоминающем устройстве, обладающем достаточной емкостью и соответствующими скоростями выборки и записи команд программы.

3. Программа, так же как и числа, с которыми оперирует машина, записывается в двоичном коде. Таким образом, по форме представления команды и числа однотипны. Это обстоятельство приводит к следующим важным последствиям:

промежуточные результаты вычислений, константы и другие числа могут размещаться в том же запоминающем устройстве, что и программа;

числовая форма записи программы позволяет машине производить операции над величинами, которыми закодированы команды программы.

4. Трудности физической реализации запоминающего устройства, быстродействие которого соответствует скорости работы логических схем, требует иерархической организации памяти.

5. Арифметическое устройство машины конструируется на основе схем, выполняющих операцию сложения, создание специальных устройств для выполнения других операций нецелесообразно.

6. В машине используется параллельный принцип организации вычислительного процесса (операции над словами производятся одновременно по всем разрядам).

Нельзя сказать, что перечисленные принципы построения ЭВМ были впервые высказаны Дж.Нейманом и остальными авторами. Их заслуга в том, что они, обобщив накопленный опыт построения цифровых вычислительных машин, сумели перейти от схемных (технических) описаний машин к их обобщенной логически ясной структуре, сделали важный шаг от теоретически важных основ (машина Тьюринга) к практике построения реальных ЭВМ. Имя Дж.Неймана привлекло внимание к отчетам, а высказанные в них принципы и структура ЭВМ получили название неймановских.

Под руководством Дж.Неймана в Принстонском институте перспективных исследований в 1952г. была создана еще одна машина на электронных лампах МАНИАК (для расчетов по созданию водородной бомбы), а в 1954г. еще одна, уже без участия Дж.Неймана. Последняя была названа в честь ученого "Джониак". К сожалению, всего три года спустя Дж.Нейман тяжело заболел и умер.

Дж.Мочли и П.Эккерт, обиженные тем, что в отчёте Принстонского университета они не фигурировали и выстраданное ими решение располагать программы в оперативной памяти стали приписывать Дж.Нейману, а, с другой стороны, увидев, что многие, возникшие как грибы после дождя, фирмы стремятся захватить рынок ЭВМ, решили взять патенты на ЭНИАК.

Однако в этом им было отказано. Дотошные соперники разыскали информацию о том, что еще в 1938 - 1941 годах работавший в сельскохозяйственном училище штата Айова профессор математики Джон Атанасов (1903 -1996), болгарин по происхождению, вместе со своим помощником Клиффордом Бери разработал макет специализированной цифровой вычислительной машины (с использованием двоичной системы счисления) для решения систем алгебраических уравнений. Макет содержал 300 электронных ламп, имел память на конденсаторах. Таким образом, пионером ламповой техники в области компьютеров оказался Атанасов.

К тому же Дж.Мочли, как выяснил суд, разбиравший дело по выдаче патента, оказывается, был знаком с работами Атанасова не по наслышке, а провел пять дней в его лаборатории, в дни создания макета.

Что касается хранения программ в оперативной памяти и теоретического обоснования основных свойств современных компьютеров, то и здесь Дж.Мочли и П.Эккерт не были первыми. Еще в 1936г. об этом сказал Алан Тьюринг (1912 - 1953) - гениальный, математик, опубликовавший тогда свою замечательную работу "О вычислимых числах".

Полагая, что наиболее важная черта алгоритма (задания на обработку информации) - это возможность механического характера его выполнения, А.Тьюринг предложил для исследования алгоритмов абстрактную машину, получившую название "машина Тьюринга". В ней он предвосхитил основные свойства современного компьютера. Данные должны были вводиться в машину с бумажной ленты, поделенной на клетки-ячейки. Каждая из них содержала символ или была пустой. Машина не только могла обрабатывать записанные на ленте символы, но и изменять их, стирая старые и записывая новые в соответствии с инструкциями, хранимыми в ее внутренней памяти. Для этого она дополнялась логическим блоком, содержащим функциональную таблицу, определяющую последовательность действий машины. Иначе говоря, А.Тьюринг предусмотрел наличие некоторого запоминающего устройства для хранения программы действий машины. Но не только этим определяются его выдающиеся заслуги.

В 1942 - 1943 годах, в разгар Второй мировой войны, в Англии, в обстановке строжайшей секретности с его участием в Блечли-парке под Лондоном была построена и успешно эксплуатировалась первая в мире специализированная цифровая вычислительная машина "Колоссус" на электронных лампах для расшифровки секретных радиограмм немецких радиостанций. Она успешно справилась с поставленной задачей. Один из участников создания машины так оценил заслуги А.Тьюринга:"Я не хочу сказать, что мы выиграли войну благодаря Тьюрингу, но беру на себя смелость сказать, что без него мы могли ее и проиграть". После войны ученый принял участие в создании универсальной ламповой ЭВМ. Внезапная смерть на 41-м году жизни помешала реализовать в полной мере его выдающийся творческий потенциал. В память об А.Тьюринге в установлена премия его имени за выдающиеся работы в области математики и информатики. ЭВМ "Колоссус" восстановлена и хранится в музее местечка Блечли парк, где она была создана.

Однако, в практическом плане Дж.Мочли и П.Эккерт действительно оказались первыми, кто, поняв целесообразность хранения программы в оперативной памяти машины (независимо от А. Тьюринга), заложили это в реальную машину - свою вторую машину ЭДВАК. К сожалению ее разработка задержалась, и она была введена в эксплуатацию только в 1951г. В это время в Англии уже два года работала ЭВМ с хранимой в оперативной памяти программой! Дело в том, что в 1946 г. в разгар работ по ЭДВАК Дж.Мочли прочитал курс лекций по принципам построения ЭВМ в Пенсильванском университете. Среди слушателей оказался молодой ученый Морис Уилкс (родился в 1913г.) из Кембриджского университета, того самого, где сто лет назад Ч. Беббидж предложил проект цифровой машины с программным управлением. Вернувшись в Англию, талантливый молодой ученый сумел за очень короткий срок создать ЭВМ ЭДСАК (электронный компьютер на линиях задержки) последовательного действия с памятью на ртутных трубках с использованием двоичной системы исчисления и хранимой в оперативной памяти программой. В 1949 г. машина заработала. Так М. Уилкс оказался первым в мире, кто сумел создать ЭВМ с хранимой в оперативной памяти программой. В 1951 В 1951г. он же предложил микропрограммное управление операциями. ЭДСАК стал прототипом первой в мире серийной коммерческой ЭВМ ЛЕО (1953г.). Сегодня М. Уилкс - единственный из оставшихся в живых компьютерных пионеров мира старшего поколения, тех, кто создавал первые ЭВМ. Дж. Мочли и П. Эккерт пытались организовать собственную компанию, но ее пришлось продать из-за возникших финансовых затруднений. Их новая разработка - машина УНИВАК, предназначенная для коммерческих расчетов, перешла в собственность фирмы Ремингтон Рэнд и во многом способствовала ее успешной деятельности.

Хотя Дж. Мочли и П. Эккерт не получили патента на ЭНИАК, его создание стало, безусловно золотой вехой в развитии цифровой вычислительной техники, отмечающей переход от механических и электромеханических к электронным цифровым вычислительным машинам.

В 1996 г. по инициативе Пенсильванского университета многие страны мира отметили 50-летие информатики, связав это событие с 50-летием создания ЭНИАК. Для этого имелись многие основания - до ЭНИАКа и после ни одна ЭВМ не вызвала такого резонанса в мире и не имела такого влияния на развитие цифровой вычислительной техники как замечательное детище Дж. Мочли и П. Эккерта.

Во второй половине нашего века развитие технических средств пошло значительно быстрее. Еще стремительней развивалась сфера программного обеспечения, новых методов численных вычислений, теория искусственного интеллекта.

В 1995 г. американский профессор информатики Университета штата Вирджиния Джон Ли опубликовал книгу "Компьютерные пионеры". В число пионеров он включил тех, кто внес существенный вклад в развитие технических средств, программного обеспечения, методов вычислений, теорию искусственного интеллекта и др., за время от появления первых примитивных средств обработки информации до наших дней.

Заключение

За последние десятилетия XX века компьютеры многократно увеличили свое быстродействие и объемы перерабатываемой и запоминаемой информации.

В 1965 году Гордон Мур, один из основателей корпорации Intel, лидирующей в области компьютерных интегральных схем - "чипов", высказал предположение, что число транзисторов в них будет ежегодно удваиваться. В течение последующих 10 лет это предсказание сбылось, и тогда он предположил, что теперь это число будет удваиваться каждые 2 года. И, действительно, число транзисторов в микропроцессорах удваивается за каждые 18 месяцев. Теперь специалисты по компьютерной технике называют эту тенденцию законом Мура. Похожая закономерность наблюдается и в области разработки и производства устройств оперативной памяти и накопителей информации. Не отставало и развитие программного обеспечения, без которого вообще невозможно пользование персональным компьютером, и прежде всего операционных систем, обеспечивающих взаимодействие между пользователем и ПК.

В 1981 году фирма Microsoft разработала операционную cистему MS-DOS для своих персональных компьютеров.

В 1983 году был создан усовершенствованный персональный компьютер IBM PC/XT фирмы IBM.

В 1980-х годах были созданы черно-белые и цветные струйные и лазерные принтеры для распечатки информации на выходе из компьютеров. Они значительно превосходят матричные принтеры по качеству и скорости печати.

В 1983-1993 годах происходило создание глобальной компьютерной сети Internet и электронной почты E-mail, которыми смогли воспользоваться миллионы пользователей во всем мире.

В 1992 году фирма Microsoft выпустила операционную систему Windows-3.1 для IBM PC-совместимых компьютеров. Слово "Windows" в переводе с английского означает "окна". "Оконная" операционная система позволяет работать сразу с несколькими документами. Она представляет собой так называемый "графический интерфейс". Это - система взаимодействия с ПК, при которой пользователь имеет дело с так называемыми "иконками": картинками, которыми он может управлять с помощью компьютерной мыши. Такой графический интерфейс и система окон был впервые создан в исследовательском центре фирмы Xerox в 1975 году и применен для ПК Apple.

В 1995 году фирма Microsoft выпустила операционную систему Windows-95 для IBM PC-совместимых компьютеров, более совершенную по сравнению с Windows-3.1, в 1998 году - ее модификацию Windows-98, а в 2000 году - Windows-2000, а в 2006 году - Windows ХР. Для них разработан целый ряд прикладных программ: текстовый редактор Word, электронные таблицы Excel, программа для пользования системой Internet и электронной почтой E-mail - Internet Explorer, графический редактор Paint, стандартные прикладные программы (калькулятор, часы, номеронабиратель), дневник Microsoft Schedule, универсальный проигрыватель, фонограф и лазерный проигрыватель.

За последние годы стало возможным объединить на персональном компьютере текст и графику со звуком и движущимися изображениями. Такая технология получила название "мультимедиа". В качестве носителей информации в таких мультимедийных компьютерах используются оптические компакт-диски CD-ROM (Compact Disk Read Only Memory - т.е. память на компакт-диске "только для чтения"). Внешне они не отличаются от звуковых компакт-дисков, используемых в проигрывателях и музыкальных центрах. Кроме портативных персональных компьютеров, создаются суперкомпьютеры для решения сложных задач в науке и технике - прогнозов погоды и землетрясений, расчетов ракет и самолетов, ядерных реакций, расшифровки генетического кода человека. В них используются от нескольких до нескольких десятков микропроцессоров, осуществляющих параллельные вычисления. Первый суперкомпьютер разработал Сеймур Крей в 1976 году.

В 2002 году в Японии был построен суперкомпьютер NEC Earth Simulator, выполняющий 35,6 триллионов операций в секунду. На сегодня это самый быстродействующий в мире суперкомпьютер.

В 2005 году компания IBM разработала суперкомпьютер Blue Gene производительностью свыше 30 триллионов операций в секунду. Он содержит 12000 процессоров и обладает в тысячу раз большей мощностью, чем знаменитый Deep Blue, с которым в 1997 году играл в шахматы чемпион мира Гарри Каспаров. Компания IBM и исследователи из Швейцарского политехнического института в Лозанне впервые предприняли попытку моделирования человеческого мозга. В 2006 году персональным компьютерам исполнилось 25 лет. Они очень изменились за эти годы. Первые из них, оборудованные микропроцессором Intel, работали с тактовой частотой всего 4,77 МГц и имели оперативную память 16 Кбайт. Современные ПК, оборудованные микропроцессором Pentium 4, созданном в 2001 году, имеют тактовую частоту 3-4 ГГц, оперативную память 512 Мбайт - 1Гбайт и долговременную память (винчестер) объемом десятки и сотни Гбайт и даже 1 Терабайт. Такого гигантского прогресса не наблюдается ни в одной отрасли техники, кроме цифровой вычислительной. Если бы такой же прогресс был в увеличении скорости самолетов, то они давно бы уже летали со скоростью света. Миллионы компьютеров используются практически во всех отраслях экономики, промышленности, науки, техники, педагогики, медицины. Основные причины такого прогресса - в необычайно высоких темпах микроминиатюризации устройств цифровой электроники и успехах программирования, сделавших "общение" рядовых пользователей с персональными компьютерами простым и удобным.

Глоссарий

Определение

Информатика

Наука о способах получения, накопления, хранения, преобразования, передачи и использовании информации.

Вычислительная машина

Механизм, электромеханическое или электронное устройство, предназначенное для выполнения математических операций.

Паскалинка

Суммирующая машина, созданная Б.Паскалем.

Счетная машина (Лейбниц)

Арифметический прибор для сложения и умножения.

Программирование

Задание последовательности арифметических действий и определения исходных данных.

Машина Тьюринга

Абстрактная машина, созданная А.Тьюрингом.

Алгебра Буля

Алгебра логики, разработанная Д.Булем.

Перфокарта

Носитель информации, предназначенный для использования в системах автоматической обработки данных.

Двоичная система счисления

Это позиционная система счисления с основанием 2.

Плавающая запятая

Форма представления дробных чисел, в которой число хранится в форме мантиссы и показателя степени.

Список использованных источников

1. Левин В.И., "История информационных технологий."

БИНОМ. Лаборатория знаний, Интернет-университет информационных технологий - ИНТУИТ.ру, 2007

2. Аркадий Частиков, "Архитекторы компьютерного мира", БХВ-Петербург, 2002г

3. Виталий Леонтьев, "Новейшая энциклопедия персонально компьютера 2005", ОЛМА-ПРЕСС Образование, 2005г

4. Полунов Ю.Л., "От абака до компьютера: судьбы людей и машин", Русская Редакция, 2004г

5. Малиновский Б.Н., "История вычислительной техники в лицах", Киев, 1995г

6. Емельянов С.В., "Информационные технологии и вычислительные системы", Едиториал УРСС, 2004г.

7. Угринович Н.Д. "Информатика и информационные технологии", БИНОМ. Лаборатория знаний, 2003г.

8. Владимир Машурцев, Георгий Ксандопуло, Игорь Корнеев "Информационные технологии: учебник для вузов". 2009г

9. Трофимов В.В., "Информационные технологии" 2007г.

10. Федорова Н., "Информационные системы" Akademia, 2010г

Список сокращений

Машина Z1 - первая машина Цзуе.

МАРК-1 - первая релейно-механическая цифровая вычислительная машина.

МАРК-2 - вторая релейно-механическая цифровая вычислительная машина.

МАРК-3 - третья релейно-механическая цифровая вычислительная машина.

МАРК-4 - четвертая релейно-механическая цифровая вычислительная машина.

ЭНИАК - вычислительная машина, названная электронным цифровым интегратором и компьютером.

ЭДВАК - электронный цифровой компьютер, в котором размещались программы в оперативной памяти.

ЭВМ ЭДСАК - электронный компьютер на линиях задержки.

УНИВАК - машина, предназначенная для коммерческих расчетов.

Исто́рия информацио́нных техноло́гий берёт своё начало задолго до возникновения современной дисциплины информатика , появившейся в XX веке . Информационные технологии (ИТ) связаны с изучением методов и средств сбора, обработки и передачи данных с целью получения информации нового качества о состоянии объекта, процесса или явления.

Ввиду возрастания потребностей человечества в обработке всё большего объёма данных, средства получения информации совершенствовались от самых ранних механических изобретений до современных компьютеров . Также в рамках информационных технологий идёт развитие сопутствующих математических теорий , которые сейчас формируют современные концепции .

Информационные технологии активизируют и эффективно используют информационные ресурсы общества (научные знания, открытия, изобретения, технологии, передовой опыт), что позволяет получить существенную экономию других видов ресурсов – сырья, энергии, полезных ископаемых, материалов и оборудования, людских ресурсов, социального времени . К настоящему времени ИТ прошли несколько эволюционных этапов , смена которых определяется главным образом развитием научно-технического прогресса, появлением новых технических средств переработки информации. Основным техническим средством технологии переработки информации является персональный компьютер , который существенно повлиял как на концепцию построения и использования технологических процессов, так и на качество информации, получаемой после обработки .

Энциклопедичный YouTube

    1 / 5

    ✪ История появления и развития программирования и ЭВМ

    ✪ Лекция 1: Структура и задачи службы информационных технологий

    ✪ XXI век - век информационных технологий

    ✪ История развития информационной технологии

    ✪ 01 - Базы данных. Этапы развития информационных систем и баз данных

    Субтитры

Ранняя история

Наиболее раннее упоминание об использовании вычислительных устройств приходится на период 2700-2300 до н. э. Тогда в древнем Шумере был распространён абак . Он состоял из доски с начерченными линиями, которые разграничивали последовательность порядков системы счисления . Изначальный способ использования шумерского абака заключался в начертании линий на песке и гальке. Модифицированные абаки использовались также, как современные калькуляторы .

Механические аналоговые вычислительные устройства появились сотни лет спустя в средневековом исламском мире . Примерами устройств этого периода являются экваториум изобретателя Аз-Заркали , механический мотор астролябии Абу Райхан аль-Бируни и торкветум Джабир ибн Афлаха . Мусульманские инженеры построили ряд автоматов, в том числе музыкальных, которые могут быть «запрограммированы», чтобы играть различные музыкальные композиции. Эти устройства были разработаны братьями Бану Муса и Аль-Джазари . Мусульманскими математиками также сделаны важные достижения в области криптографии и криптоанализа , а также частотного анализа Аль-Кинди .

После того, как в начале XVII века Джон Непер открыл логарифмы для вычислительных целей, последовал период значительного прогресса среди изобретателей и учёных в создании инструментов расчёта. В 1623 году Вильгельм Шиккард разработал вычислительную машину, но отказался от проекта, когда прототип, который он начал строить, был уничтожен пожаром в 1624 году. Около 1640 года Блез Паскаль , ведущий французский математик, построил первое механическое устройство сложения . Структура описания этого устройства основана на идеях греческого математика Герона . Затем, в 1672 году, Готфрид Вильгельм Лейбниц изобрёл ступенчатый калькулятор , который он собрал в 1694 году .

Для возможности создания первого современного компьютера ещё требовалось значительное развитие теории математики и электроники .

Бинарная логика

К этому времени было изобретено первое механическое устройство, управляемое бинарной схемой. Промышленная революция дала толчок механизации многих задач, включая ткачество . Перфокарты контролировали работу ткацких станков Жозефа Мари Жаккара , где перфорированное отверстие на карте означало бинарную единицу, а неперфорированное место означало бинарный ноль. Благодаря перфокартам станки имели возможность воспроизводить сложнейшие узоры. Ткацкий станок Жаккара был далек от того, чтобы называться компьютером, но он показывает, что бинарная система могла быть использована для управления механизмами .

Становление дисциплины

Пионеры вычислительной техники

До 1920-х годов компьютерами (что-то вроде вычислительной машины ) были клерки, выполнявшие вычисления. Много тысяч таких компьютеров было занято в коммерции, работали в правительстве и научно-исследовательских учреждениях. «Компьютерами», в большинстве своём, являлись женщины, которые имели специальное образование. Некоторые выполняли астрономические вычисления для календарей .

Математические основы современной информатики были заложены Куртом Гёделем в его теореме о неполноте (1931). В этой теореме, он показал, что существуют пределы того, что может быть доказано и опровергнуто с помощью формальной системы. Это привело к определению и описанию Гёделем и другими формальных систем, в том числе были определены такие понятия, как μ-рекурсивная функция и λ-определимые функции .

1936 был ключевым годом для информатики. Алан Тьюринг и Алонзо Черч параллельно друг с другом представили формализацию алгоритмов с определением пределов того, что может быть вычислено, и «чисто механическую» модель для вычисления.

Алан Тьюринг и его аналитическая машина

После 1920-х годов выражение вычислительная машина относят к любым машинам, которые выполняли работу человека-компьютера , особенно к тем, которые были разработаны в соответствии с эффективными методами тезиса Чёрча - Тьюринга . Этот тезис формулируется как: «Всякий алгоритм может быть задан в виде соответствующей машины Тьюринга или частично рекурсивного определения, а класс вычислимых функций совпадает с классом частично рекурсивных функций и с классом функций, вычислимых на машинах Тьюринга» . По-другому, тезис Чёрча-Тьюринга определяется как гипотеза о природе механических устройств расчетов, таких как электронно-вычислительные машины. Любое вычисление, какое только возможно, может быть выполнено на компьютере, при условии, что в нем достаточно времени и места для хранения.

Механизмы, работающие над вычислениями с бесконечностями, стали известны как аналоговый тип. Значения в таких механизмах представлялись непрерывными числовыми величинами, например, угол вращения вала или разность электрического потенциала .

В отличие от аналоговых, цифровые машины имели возможность представлять состояние числового значения и хранить отдельно каждую цифру. Цифровые машины использовали различные процессоры или реле до изобретения устройства с оперативной памятью .

Название вычислительная машина с 1940-х начало вытесняться понятием компьютер . Те компьютеры были в состоянии выполнять вычисления, которые раньше выполняли клерки. Начиная с того, как значения перестали зависеть от физических характеристик (как в аналоговых машинах), логический компьютер, основанный на цифровом оборудовании, был в состоянии сделать всё, что может быть описано чисто механической системой .

Машины Тьюринга были разработаны, чтобы формально математически определить, что может быть вычислено с учётом ограничений на вычислительную способность. Если машина Тьюринга может выполнить задачу, то задача считается вычислимой по Тьюрингу. Тьюринг в основном сосредоточился на проектировании машины, которая могла определить, что может быть вычислено. Тьюринг сделал вывод, что, пока существует машина Тьюринга, которая могла бы вычислять приближение числа, это значение исчислимо. Кроме того, машина Тьюринга может интерпретировать логические операторы , такие как AND, OR, XOR, NOT, и «Если-То-Иначе», чтобы определить, является ли функция вычислимой .

На симпозиуме по крупномасштабной цифровой технике в Кембридже Тьюринг сказал: «Мы пытаемся построить машину, чтобы делать различные вещи просто путём программирования, а не путём добавления дополнительного оборудования» .

Шеннон и теория информации

До и во время 1930-х годов инженеры-электрики смогли построить электронные схемы для решения математических и логических задач, но большинство из них делали это специальным образом, не имея никакой теоретической строгости. Все изменилось с публикацией диссертации магистра 1937 году Клода Э́лвуда Ше́ннона на тему: Символический анализ релейных соединений и соединение с коммутацией каналов (A Symbolic Analysis of Relay and Switching Circuits). Шеннон, находящийся под воздействием работы Буля , признал, что она может быть использована для организации электромеханических реле для решения логических задач (затем стала использоваться в телефонных коммутаторах). Эта концепция (об использовании свойств электрических переключателей) лежала в основе всех электронных цифровых вычислительных машин.

Шеннон основал новый раздел информатики - теория информации . В 1948 году он опубликовал статью под названием . Идеи из этой статьи применяются в теории вероятностей к решению проблемы, как лучше кодировать информацию, которую хочет передать отправитель. Эта работа является одной из теоретических основ для многих областей исследований, в том числе сжатие данных и криптография .

Винер и кибернетика

Из экспериментов с зенитными системами, которые интерпретировали радиолокационные изображения для обнаружения вражеских самолетов, Норберт Винер ввел термин кибернетика от др.-греч. κυβερνητική «искусство управления». Он опубликовал статью «Кибернетика» в 1948 году, что повлияло на появление искусственного интеллекта. Винер также сравнил вычисления, вычислительную технику, устройства памяти и другие когнитивно сходные понятия со своего рода анализом мозговых волн.

Джон фон Нейман и архитектура фон Неймана

В 1946 году была создана модель компьютерной архитектуры, которая стала известна как архитектура фон Неймана . С 1950 года модель фон Неймана обеспечила единство конструкций последующих компьютеров. Архитектура фон Неймана считалась новаторской, поскольку фон Нейман ввел представление, позволяющее использовать машинные команды и распределять области памяти. Модель Неймана состоит из 3 основных частей: арифметическо-логическое устройство (АЛУ), память (ОП) и блок управления памятью .

Развитие аппаратного обеспечения

Первое и второе поколения компьютеров

В 1950 году в Национальной физической лаборатории (Великобритания) завершен Pilot ACE , программируемый компьютер небольших масштабов, основанный на модели машины Тьюринга.

Среди других значительных разработок компания IBM 13 сентября 1956 представила первый накопитель на жестких магнитных дисках («винчестер») RAMAC объёмом 5 Мегабайт , 12 сентября 1958 в компании Texas Instruments заработала первая микросхема (изобретателями микросхемы считают Джека Килби и одного из основателей Intel Роберта Нойса).

Третье и последующие поколения компьютеров

Под руководством Лебедева в период 1948-1951 г.г. создавалась первая отечественная вычислительная машина МЭСМ - малая электронная счетная машина первого поколения (1951 г.). Архитектура и принципы построения МЭСМ были аналогичными тем, которые ранее уже использовались в ЭНИАКе, хотя Лебедев не был знаком с архитектурой фон Неймана. Параллельно с работой в Киеве С. А. Лебедев руководит разработкой большой электронной счетной машины БЭСМ в ИТМиВТ. С 1953 г. Первая модель БЭСМ имела сниженное быстродействие, около 2000 операций в с. Было создано 7 экземпляров БЭСМ-2 на Казанском заводе счетно-аналитических машин. Вариант БЭСМ, БЭСМ-4, была разработана на полупроводниковой элементной базе (главный конструктор О. П. Васильев, научный руководитель С. А. Лебедев) .

М-20 (главный конструктор С. А. Лебедев) - одна из лучших машин первого поколения (1958 г.). М-40 - компьютер, созданный в 1960 г. и считающийся первым Эльбрусом на вакуумных лампах (главный конструктор С. А. Лебедев, его заместитель В. С. Бурцев). В 1961 г. зенитная ракета, управляемая компьютером М-40, на испытаниях успешно сбивает межконтинентальную баллистическую ракету, способную нести ядерное оружие .

Вершиной научных и инженерных достижений С. А. Лебедева стала БЭСМ-6, первый образец машины был создан в 1967 г. В ней реализованы такие новые принципы и решения, как параллельная обработка нескольких команд, сверхбыстрая регистровая память, расслоение и динамическое распределение оперативной памяти, многопрограммный режим работы, развитая система прерываний. БЭСМ-6 - суперЭВМ второго поколения .

Начиная с 1958 г., ведутся разработки управляющей ЭВМ «Днепр» (главный конструктор Б. Н. Малиновский , научный руководитель В. М. Глушков), а с 1961 г. началось внедрение этих машин на заводах страны. Эти машины появились одновременно с управляющими машинами в США и выпускались целое десятилетие (обычно срок морального старения ЭВМ составляет пять-шесть лет) .

В 1962 г. по инициативе В. М. Глушкова создается , а в 1963 г. - СКБ вычислительных машин. После «Днепра» главное направление работ коллектива под руководством Глушкова - создание интеллектуальных ЭВМ, упрощающих инженерные расчеты .

Становление программирования в СССР

Начальной точкой возникновения отечественного программирования следует считать 1950 год, когда появился макет первой советской ЭВМ МЭСМ (и первой ЭВМ в континентальной Европе).

Главное и общепризнанное достижение Д. А. Поспелова состоит в создании в конце 60-годов XX-го века комплекса новых методов построения систем управления , в основе которых лежат семиотические модели представления объектов управления и описания процедур управления . Им был создан аппарат ярусно-параллельных форм, позволивший ставить и решать многие проблемы, связанные с организацией параллельных вычислений в вычислительных комплексах и сетях. На его основе в 70-е годы были решены такие проблемы как синхронное и асинхронное распределение программ по машинам компьютерной системы, оптимальная сегментация программ, оптимизация информационных обменов .

Развитие программного обеспечения

Операционные системы

Также набирают популярность мобильные операционные системы . Это операционные системы, которые работают на смартфонах , планшетах , КПК , или других цифровых мобильных устройствах. Современные мобильные операционные системы сочетают в себе черты операционной системы персонального компьютера с такими особенностями, как сенсорный экран , сотовая связь , Bluetooth , Wi-Fi , GPS навигация , фотоаппарат , видеокамера , распознавание речи , диктофон , MP3-плеер , NFC и ИК-порт .

Мобильные устройства с возможностями мобильной связи (например, смартфон) содержат две мобильные операционные системы. Программная платформа, которая доступна пользователю, дополняется второй низкоуровневой собственной операционной системой реального времени, с помощью которой работает радио и другое оборудование . Наиболее распространенными мобильными операционными системами являются Android , Asha , Blackberry , iOS , Windows Phone , Firefox OS , Sailfish OS , Tizen , Ubuntu Touch OS.

Развитие сетей

Одна из первых попыток создать средство связи с использованием электричества относится ко второй половине XVIII века, когда Лесаж в 1774 году построил в Женеве электростатический телеграф . В 1798 году испанский изобретатель Франциско де Сальва создал собственную конструкцию электростатического телеграфа. Позднее, в 1809 году немецкий учёный Самуил Томас Земмеринг построил и испытал электрохимический телеграф .

Дальнейшим развитием телеграфа стал телефон . Александр Грэхам Белл организовал первые телефонные переговоры по телеграфным проводам 9 октября . Трубка Белла служила по очереди и для передачи, и для приёма человеческой речи. Телефон, запатентованный в США 1876 году Александром Беллом, назывался «говорящий телеграф». Вызов абонента производился через трубку при помощи свистка. Дальность действия этой линии не превышала 500 метров .

История дальнейшего развития телефона включает в себя электрический микрофон, наконец, окончательно заменивший угольный, громкую связь, тоновый набор, цифровое сжатие звука. Новые технологии: IP-телефония, ISDN, DSL, сотовая связь, DECT.

В дальнейшем встала необходимость в сетях передачи данных (компьютерные сети) - системах связи между компьютерами или вычислительного оборудования. В 1957 году Министерство обороны США посчитало, что Американской армии на случай войны нужны надёжные системы связи и передачи информации. Пол Бэрен, разработал проект распределённой сети. Она была названа ARPANET (англ. Advanced Research Projects Agency Network). В связи с тем, что на большие расстояния очень тяжело передать аналоговый сигнал без искажений, он предложил передавать цифровые данные пакетами .

В декабре 1969 была создана экспериментальная сеть, соединившая четыре узла:

  • Калифорнийский университет в Лос-Анджелесе (UCLA)
  • Калифорнийский университет в Санта-Барбара (UCSB)
  • Исследовательский университет Стэнфорда (SRI)
  • Университет штата Юта

За несколько лет сеть постепенно охватила все Соединённые Штаты.

В 1965 году Дональд Дэвис, учёный из Национальной физической лаборатории Англии, предложил создать в Англии компьютерную сеть, основанную на коммутации пакетов. Идея не была поддержана, но к 1970 году ему удалось создать подобную сеть для удовлетворения нужд многодисциплинарной лаборатории и для доказательства работы этой технологии на практике . К 1976 году сеть объединяла уже 12 компьютеров и 75 терминальных устройств .

К 1971 году сотрудниками Массачусетского технологического института была разработана первая программа для отправки электронной почты по сети. Эта программа сразу стала очень популярна среди пользователей. В 1973 году к сети были подключены через трансатлантический телефонный кабель первые иностранные организации из Великобритании и Норвегии, и компьютерная сеть стала международной.

В 1983 году за сетью ARPANET закрепился термин «Интернет ». В сентябре была опубликована спецификация Ethernet . 12 ноября - специалист по информатике Тим Бернерс-Ли опубликовал предложения по системе гипертекстовых диаграмм, дав ей название World Wide Web . В 1990-е годы Интернет объединил в себе большинство существовавших тогда сетей (хотя некоторые, как Фидонет, остались обособленными). Объединение выглядело привлекательным благодаря отсутствию единого руководства, а также благодаря открытости технических стандартов Интернета, что делало сети независимыми от бизнеса и конкретных компаний.

См. также

Примечания

Литература

  • Shallit, Jeffrey A Very Brief History of Computer Science (англ.) . CS 134 in University of Waterloo (1995).
  • М.В.Бастриков, О.П.Пономарев. Информационные технологии управления: Учебное пособие . - Калининград: Ин-та «КВШУ», 2005. - 140 с.
  • Bellos, Alex Abacus adds up to number joy in Japan (неопр.) . Дата обращения 25 июня 2013.
  • Ifrah Georges. The Universal History of Computing: From the Abacus to the Quantum Computer. - John Wiley & Sons, 2001. - 11 с.